Model Performance Benchmarks: Real-World Coding Comparisons
Model Performance Benchmarks: Real-World Coding Comparisons
Updated January 2025
Important: AI models evolve rapidly. Benchmark your models using established coding benchmarks like HumanEval1, SWE-Bench2, and LiveCodeBench3.
- Testing models with your specific workload
- Checking Groq configurations for current recommendations
- Exploring OpenRouter guide for latest models
- Using
chu models searchto discover available models
Speed vs Quality Trade-offs
Speed Champions (Groq)
| Model | Speed (TPS) | Use Case |
|---|---|---|
| Llama 3.1 8B | 840+ | Router, fast classification |
| Qwen3 32B | 650 | Fast coding with good quality |
| GPT-OSS 120B | 500 | Query/research with reasoning |
| DeepSeek-R1-Qwen-32B | 600 | Code generation (83.3% AIME) |
Groq’s LPU technology delivers unmatched inference speed.
Quality Leaders (OpenRouter)
Based on 2025 benchmarks and real-world testing:
| Model | Strength | Context | Cost |
|---|---|---|---|
| Claude 4.5 Sonnet | Code review, debugging | 200k | Premium |
| Grok 4.1 Fast | Agentic tasks, 2M context | 2M | Free tier |
| Qwen 2.5 Coder 32B | Code generation (88.4% HumanEval) | 131k | Budget |
| GPT-OSS 120B | Reasoning, comprehension | 128k | Budget |
Current Recommendations (2025)
For Speed + Budget
Groq Backend:
chu profiles create groq speed
chu profiles set-agent groq speed router llama-3.1-8b-instant
chu profiles set-agent groq speed editor llama-3.3-70b-versatile
chu profiles set-agent groq speed query llama-3.3-70b-versatile
chu profiles set-agent groq speed research groq/compound
- Router: Llama 3.1 8B Instant (840 TPS, ultra-cheap)
- Editor: Llama 3.3 70B Versatile (strong all-around)
- Query: Llama 3.3 70B Versatile (good reasoning)
- Research: Groq Compound (web search + tools)
For Maximum Quality
OpenRouter Backend:
chu profiles create openrouter quality
chu profiles set-agent openrouter quality router google/gemini-2.0-flash-exp:free
chu profiles set-agent openrouter quality editor anthropic/claude-4.5-sonnet
chu profiles set-agent openrouter quality query anthropic/claude-4.5-sonnet
chu profiles set-agent openrouter quality research x-ai/grok-4.1-fast:free
- Router: Gemini 2.0 Flash (free, fast)
- Editor: Claude 4.5 Sonnet (premium quality)
- Query: Claude 4.5 Sonnet (best code understanding)
- Research: Grok 4.1 Fast (2M context, free tier)
For Zero Cost
OpenRouter Free Models:
chu profiles create openrouter free
chu profiles set-agent openrouter free router google/gemini-2.0-flash-exp:free
chu profiles set-agent openrouter free editor moonshotai/kimi-k2:free
chu profiles set-agent openrouter free query google/gemini-2.0-flash-exp:free
chu profiles set-agent openrouter free research x-ai/grok-4.1-fast:free
- Router: Gemini 2.0 Flash (fastest TTFT)
- Editor: Kimi K2 (good coding, free)
- Query: Gemini 2.0 Flash or Grok 4.1 Fast (2M context)
- Research: Grok 4.1 Fast (2M context, agentic design)
Note: Free models have rate limits. For consistent availability, consider adding your own API keys or using paid tiers.
Discovering Models
Use Chuchu’s model search to find available models:
# Search by provider
chu models search groq llama
# Search by features
chu models search free coding
# Filter by agent type
chu models search --agent editor openrouter
See our detailed configuration guides for setup instructions and cost breakdowns.
References
-
Chen, M., Tworek, J., Jun, H., Yuan, Q., et al. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374. https://arxiv.org/abs/2107.03374 ↩
-
Jimenez, C. E., Yang, J., Wettig, A., et al. (2024). SWE-bench: Can Language Models Resolve Real-World GitHub Issues? ICLR 2024. https://arxiv.org/abs/2310.06770 ↩
-
Jain, N., Han, K., Gu, A., et al. (2024). LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code. arXiv preprint arXiv:2403.07974. https://arxiv.org/abs/2403.07974 ↩